Final Master of Engineering Group Presentation – Ghana Team May 30th, 2008

Cash Fitzpatrick Vanessa Green Izumi Kikkawa Tamar Losleben Andrew Swanton

Presentation Outline

Ghana: Background and Logistics

- Horizontal Roughing Filtration: Tamar Losleben
- . Household Filtration (Biosand Filter) : Izumi Kikkawa
- Chlorine Products: Cash Fitzpatrick
- . HWTS Consumer Choice Study: Vanessa Green
- Ceramic Pot (Kosim) filter + Chlorine Disinfection with Aquatabs: Andrew Swanton

Background

Large Percentage of Water Source is Dugouts

(National Statistical Services Survey -CWIQ 2003)

Local Perception: Lack of Clean Drinking Water is a Major Problem

Dungu Dam

Dugouts

St. Mary's Dam

E-Coli, Total Coliform, and Turbidity of Raw Water Samples from Selected Dugouts During the Rainy Season in Tamale and Savelugu Districts

		E. coli		
Location	Date (2006)	(CFU per 100 mL)	Total Coliforms (CFU per 100 mL)	Turbidity (TU)
Ghanasco Muali Dam, TD	20-Jun	169	6,621	~1,600
Kaleriga Dam, TD	22-Jun	754	13,475	> 2,000
Bipelar Dam, TD	27-Jun	100	21,667	38
St. Mary's Dam, TD	29-Jun	(1,650	52,110	>2,000
Dungu Dam, TD	4-Jul	133	4,540	400
Libga Dam, SD	6-Jul	0	500	75
Bunglung Dam, SD	11-Jul	200	5117	300
Diare Dam, SD	13-Jul	0	3,417	23
Libga Dam, SD	17-Jul	50	1,408	50
Gbanyami Dam, TD	19-Jul	367	19,150	~1,000
Vitting Dam, TD	25-Jul	1,400	12,767	~125
Average		438	12,797	690

Source: Foran, 2007

Presentation Outline

• Ghana: Background and Logistics

. Horizontal Roughing Filtration: Tamar Losleben

- . Household Filtration: Izumi Kikkawa
- Chlorine Products: Cash Fitzpatrick
- . HWTS Consumer Choice Study: Vanessa Green
- Ceramic Pot (Kosim) filter + Chlorine Disinfection with Aquatabs: Andrew Swanton

Pilot Study of Horizontal Roughing Filtration in Northern Ghana as a Pretreatment Method for Highly Turbid Water

Tamar Rachelle Losleben

Objectives

- Characterize dugout particle sizes and distribution
 - Turbidity, settling stability, filtrability, sequential filtration, solids settleability
- Pilot test horizontal roughing filter (HRF)

Particle size characterization, turbidity, flow rate, microbial contamination

(Wegelin, 1996)

Raw Dugout Samples in Tamale and Savelugu Districts (Foran, 2007)

	Dry Season	Rainy Season
Average <i>E.Coli</i> (CFU/100 mL)	779	438
Average Total Coliform (CFU/100 mL)	26,357	12,797
Average Turbidity	248 NTU	931 NTU

Horizontal Roughing Filters (HRF)

Particle removal mechanisms in HRF (Wegelin, 1996)

Ghanasco Dam Pilot HRF

Ghanasco Dam Pilot HRF

Comparison of the Turbidity Reduction Performance of HRF Media

	Average HRF effluent turbidity	Average filtration rates (ml/min)	Average additional turbidity removed by HRF after settling	Average % additional turbidity removed by HRF after	Average % total HRF turbidity reduction	Filtration coefficient , λ (min^-1)
G granite gravel	51 NTU	220 (1.6 m/hr)	46 TU	61 %	84 %	0.002
D local gravel	72 NTU	170 (1.3 m/hr)	30 TU	47 %	76 %	0.0007
P broken pottery	61 NTU	200 (1.5 m/hr)	18 TU	55 %	80 %	0.0006
Goal:	< 50 NTU	41-270 (0.3-2.0 m/h)				

Ouagadougou Pilot HRF

International Institute for Water and Environmental Engineering Burkina Faso

http://aochycos.ird.ne/HTMLF/ETUDES/HYDRO/LOUMBILA.HTM

Comparison of Pilot HRF Performance

	Blue Nile Health Project, Sudan (referenced by		Ghanasco Dam, Tamale, Northern Ghana (Losleben, 2008)			Ouagadougou , Burkina Faso
Media	Wegelin, 1996) broken gravel burnt bricks	granite gravel G	local gravel D	broken pottery P	(Sylvain, quari g gyavel	
Average filtration rate (m/h)	0.3	30	1.6	1.3	1.5	1.0
Filter length and media size (mm)	270 cm, 85 cm, 85 cm,	30-50 15-20 5-10	350 250 100) cm, 12) cm, 8) cm,	2-18 8-12 4-8	400 cm, 15- 25 150 cm, 5-15
Raw water turbidity	40-500) NTU	313 NTU	301 NTU	301 NTU	5-50 NTU
Prefiltered water turbidity	5-50	NTU	51 NTU	72 NTU	61 NTU	4-19 NTU
Faecal coliforms*						
Raw water	> 300		8400	8400	8400	
Prefiltered water	< 25			15500	500	
Mean turbidity reduction	77 %	87 %	84 %	76 %	80 %	32 %

* as *E.coli*

Granite

Gravel

2 m

Ε

~

HRF Channel Design

Presentation Outline

- Ghana: Background and Logistics
- **.** Horizontal Roughing Filtration: Tamar Losleben

Household Filtration (Biosand Filter) : Izumi Kikkawa

- Chlorine Products: Cash Fitzpatrick
- . HWTS Consumer Choice Study: Vanessa Green
- Ceramic Pot (Kosim) filter + Chlorine Disinfection with Aquatabs: Andrew Swanton

Background ~Biosand Filter (BSF)~

- Household treatment
- Intermittent slow sand filtration
- Removes:
 - >90 % of *E.coli* bacteria
 - 100 % of protozoa and helminthes (worms)
 - 50-90 % of organic and inorganic toxicants
 - <67 % of iron and manganese
 - most suspended solids
- 270,000 BSFs installed in 25 countries
 - Disadvantages:
 - does not suite treatment of high turbid water
 - » Decline in treatment efficiency, frequent clogging and maintenance requirement

Turbidity Limit ~50 NTU

Diagram of Biosand Filter

Local Plastic Design BSF

Biolayer: schumutzdecke, biofilm

- most purification proceeds here
- estimated to be 5-10 cm in depth¹

Modification: Create additional biolayer

oxygen diffusion is essential

1) B.J.Buzunis, Intermittently Operated Slow Sand Filtration: A New Water Treatment Process, March 1995

No clogging

Results & Discussion -Flow Rate-

	LPD BSF	average flow rate [L/hr] (standard deviation)
Α	(without modification)	32.0 (4.1)
Α'	(without modification)	25.9 (4.9)
В	(additional 5 cm sand layer)	21.8 (6.0)
С	(additional 10 cm sand layer)	21.1 (4.3)

lower flow rates for BSF B & C

MIT Clean Water 4 All, Inc. Results & Discussion -Turbidity-

After day 13

Dugout and BSF		Average turbidity [NTU] (standard deviation)		
Dugout		306 (97)		
A	(without modification)	22 (17)		
A'	(without modification)	20 (14)		
В	(additional 5 cm sand layer)	15 (6.8)		
С	(additional 10 cm sand layer)	14 (1.4)		

MIT Clean Water 4 All, Inc. Results & Discussion -Turbidity-

After day 13

	BSF	average turbidity removal (standard deviation)
Α	(without modification)	92 % (7 %)
A'	(without modification)	93 % (6 %)
В	(additional 5 cm sand layer)	95 % (2 %)
С	(additional 10 cm sand layer)	95 % (1 %)

MIT Clean Water 4 All, Inc. Results & Discussion -Microbial-

Day

Hydrogen Sulfide Bacteria; Presence/Absence

Day	30	38	43	46
Dugout	30000	Present	Present	Present
BSF A	0		Present	Absent
BSF A'	300	Absent	Absent	Present
BSF B	200		Absent	Absent
BSF C	0		Present	Absent

E. Coli mostly not detected in influent/effluent

Discussion -LPD BSF-

Flow Rate

• Modified BSFs had slower flow rates

Due to additional basin with sand

• All BSFs had not clogged after 46 days of operation

Turbidity

- Dugout: wide variation
- Filter ripening: after 13 days
- Modified BSFs showed slightly higher turbidity removal
 - Decline in BSF A & A': operation conditions ? cleaning?
 - No decline in BSF B & C: could be benefit of modification
 Able to withstand more operational variation, or less frequent cleaning

Total Coliform Removal

- No quantitative data after filter ripening (Day 13)
- 86 % removal with average effluent of 430 cfu/100 ml (on Day 11)
 E. Coli
- Mostly was not detected in influent/effluent

HydrAid[™] BioSand Filter

- Approximately 200 HydrAid BSFs installed (December, 2007) in Kpanvo Village
- By International Aid
- Additional layer of superfine sand

MIT Clean Water 4 All, Inc. Results & Discussion -Flow Rate-

Design Flow Rate 47 L/hr

measurements not taken at maximum head thus slower than design flow rate
cleaning every 3 days
clogging was not problematic

average flow rate: 17 L/hr

MIT Clean Water 4 All, Inc. Results & Discussion -Turbidity-

Results -Microbial-

Total Coliform

Discussion -HydrAid BSF-

Flow Rate

• Slower than design flow rate, but not problematic

Turbidity

- Influent: relatively low turbidity
- Effective in turbidity removal
 - average removal 87 %, average effluent 2.9 NTU

Total Coliform

• Effective in total coliform removal

average removal:1.9 log10 units, 95 %

• Effluent concentration is high: 710 cfu/100ml

E. Coli

• Only detected in limited # of samples

Summary

**

		Locally Plastic Design BSFs	LudrAid DCCo			
		unmodified; modified				
Design	Flow Rate	15-20 L/hr	47 L/hr			
Measured	d Flow Rate	29 L/hr; 21 L/hr	17 L/hr *			
	influent	227 TU	32 NTU			
Turbidity	effluent	16 TU; 11 TU	2.9 NTU			
	removal	93 %; 95 %	87%			
Total	influent	15,000 cfu/100ml	20,000 cfu/100ml			
Coliform	effluent	430 cfu/100 ml **	710 cfu/100ml			
	removal	87 % **	95%			
Cost		\$ 16 - \$ 25	\$ 50 - \$ 65			
*	* Not measured at maximum head					

Not measured at maximum head

Average values on Day 11

Average value after 30+ days of operation

Local Plastic Design Biosand Filter Summary:

- Slower design flow rate
- Higher influent turbidity, higher percent removal
- Lower percent total coliform removal, lower effluent concentration
- Much less expensive
Presentation Outline

- Ghana: Background and Logistics
- **.** Horizontal Roughing Filtration: Tamar Losleben
- . Household Filtration (Biosand Filter) : Izumi Kikkawa
- **Chlorine Products: Cash Fitzpatrick**
- HWTS Consumer Choice Study: Vanessa Green
- Ceramic Pot (Kosim) filter + Chlorine Disinfection with Aquatabs: Andrew Swanton

Overall Goal: To Compare HTH Chlorine Dosing System with Aquatabs

- Thesis Title: "*Efficacy of Gravity-Fed Chlorination System for Community-Scale Water Disinfection in Northern Ghana*"
- Specific Objectives
 - To take Pulsar 1 System* and convert it for drinking water usage for community scale chlorination
 - Based on current capacity, need to significantly lower output residual chlorine concentrations
 - CDC: <2mg/L after 30 mins and >0.2mg/L after 24 hours
 - Compare different chlorine options (community scale versus household scale)

Pulsar 1 Unit

* Pulsar 1 system is unique in being a highly accurate chlorine dosing system <u>that does not require electricity</u> (gravity feed). It was designed for large-scale swimming pools, but we hypothesized that it might be appropriate to adapt for developing country contexts such as schools, hospitals, and rural communities.

How the Pulsar Works

• Operates in parallel with water line (diverts some flow and re-injects downstream)

Field Work Site

Modifications Made in Ghana

Modifications

- Added ¹/₄" Spiked Grid
- Enlarged "Emergency Shutoff Valve"
- Added a dilution nozzle
- Reduced the inlet/outlet flows

<u>Results</u>

- Less contact with chlorine tablets in dissolving cup
- Divert more influent water away from the chlorine tablets
- Decreased total flow in and out of Pulsar unit

Field Work Results

- Successfully lowered concentrations to drinking water levels in Ghana

But There's a Problem...

- This final modification causes frequent O&M problems
 - Low internal flow rates leads to chlorine buildup of tubes & parts
 - Is therefore *unsustainable*

Further Research at MIT Clean Water 4 All, Inc.

• Installed new parts to increase Pulsar's internal dilution capacity

- Emergency Shutoff Valve Pulls more water into the Pulsar unit
- Dilution Nozzle Assembly Diverts more of this water away from the dissolving cup

Cambridge Lab Work Results

- Partially successful in lowering chlorine concentrations to drinking water levels

Results: HTH vs. Aquatabs on Supplies Cost

HTH is <u>48X</u> Times Cheaper!

Results: HTH vs. Aquatabs on Treatment Cost (cont)

Includes: Price of chlorine, Pulsar 1 & Kosim filter, and operational cost of Pulsar

Pulsar 1 + HTH is *much* more economic on a volumetric (\$/m3) basis!

Overall HTH vs. Aquatabs Comparison

	Kosim Filter with Aquatabs	Pulsar 1 Unit with HTH
Maximum Flow Rate	Low (1-7 L/day)	High (>100,000 L/day)
Can Serve Many People		• • •
Cost of Treatment (\$/m ³)	* *	• • •
System Lifetime	~2 years*	~10 years*
Low Initial Cost (\$)	• •	٠
Low Running Cost (\$/yr)	• • •	• •
Simple O&M	• • •	• •
Materials Availability	••	• •
*Value Assumed by Author	Poor 🏾 🌞 🌞 = Moderate	🌞 🌞 🌞 =Good

There is no "single best option", so site-specific circumstances will dictate the appropriate technology

Presentation Outline

- Ghana: Background and Logistics
- . Horizontal Roughing Filtration: Tamar Losleben
- . Household Filtration (Biosand Filter) : Izumi Kikkawa
- Chlorine Products: Cash Fitzpatrick

HWTS Consumer Choice Study: Vanessa Green

• Ceramic Pot (Kosim) filter + Chlorine Disinfection with Aquatabs: Andrew Swanton

Consumer Choice Research^{MIT Clean Water 4 All, Inc.}

- Assess the relative value and cost of HWTS options in Northern Region, Ghana
 - Make recommendations about which products are likely to have the greatest impact on local drinking water quality based on product effectiveness, adoption and sustained use

Team included: Vanessa Green, Gaetan Bonhomme, Avani Kadakia, Gabriel Shapiro, Matt Thomson, Musah Abdul-Wahab, Jaafar Pelpo, Ibrahim Mohammed Ali, Alhassan Tahiru Senini & Susan Murcott

Field Research: Study Design

Final survey instrument included three elements:

- Baseline survey: water management and ability to pay
- 2. Water quality testing (microbial and turbidity)
- 3. Conjoint (choice task) to assess product feature

preference Tested New Pictorial Conjoint Methodology:

Results: Household Demographics

			House Ty	vpe (Roof)	Educ	Average	
Туре	Gender (% Female)	emale) (% Muslim) % Tin % Thatch		Primary	Primary Secondary		
Urban (n=118)	77%	94%	100%	5%	51%	31%	12
Rural (n=119)	70%	86%	15%	97%	19%	3%	13

Low rural education

Significant difference in house type between rural and rural communities

Similar household

size, urban result different from previous work in middle income areas

Results: Water Source Access & Challenges

- Majority of urban and rural respondents **collect rainwater**
- Urban respondents get water from a private tap or a neighbor (infrequent flow, taps open 2-4x / month)
- Rural respondents **use a dugout,** some access boreholes / standpipes

Results: Needs Assessment

Household Drinking Water Quality

	Turb	oidity	Tot	al Coliform	E.			
Туре	Ave. (TU)	Max. (TU)	% with CFU	% >1000 (CFU / 100ml)	Ave. (CFU/ 100ml)	% With <i>E.Coli</i>	Ave. (CFU/ 100 ml)	
Urban (n=118)	<5	<5	59%	26%	2,500	8%	47	
Rural (n=119)	238	1000	89%	82%	18,800	26%	172	

Recontamination remains a challenge

```
Highly turbid source
water, and significant
contamination
```

Results: Current Water Management ^{MIT Clean Water 4 All, Inc.} **Practice**

Urban and Rural Water Treatment Methods

areas where distributed

notable exception of alum in rural areas

Results: Ability to Pay

Urban Households:

- Average income of GHS 1,530 / yr
- Ability to pay for water GHS 0.21 / day*

Rural Households:

- Average income of \$619 / yr
- Ability to pay for water GHS 0.08 / day*

"If you are going to bring an expensive filter to this village you need to bring it at the time of year that we have just finished farming" – Rural respondent, Golinga.

Note: Ability to pay calculation assumes that 5% of daily income allocated to water

Results: Purchasing Location

Results: Conjoint Attribute Importance

• Attribute importance quantifies the effect that each of the HWTS product attributes selected had on a respondent's overall product preferences; Urban and rural communities had similar attribute importance rankings

Results: Consumer Preference

Rural Consumer Preference

02

0.2

0.3

0.1

-0.2

-0.2

-0.1

-0.4

Dislike Prefer -3.0 -1.0 -0.5 0.0 0.5 1.0 3.0 -3.1// 3.1 -3.1// 1.0 -0.9 -0.1 -0.1 -0.1 -0.1 -0.5 -0.1 -0.5

- favored (respondents want something that will last)
- Short treatment time more important in urban
- Slight preference for clear/crisp (urban) and clear/ chlorine (rural)
- **Higher prices** preferred in urban areas, limited price sensitivity in rural

MIT Clean Water 4 All, Inc. HWTS Product Options Assessment

Туре	Household Water Product		Turbidity Efficacy	Microbial Efficacy	Local Availability	Annual cost (GHC) / family*
	Cloth Filter		Low	Low	High	0.0
Particle	Alum	-	High	Low-Moderate	High	2.2
Removal	BioSand	Local LDP	High	Moderate	Low	10
	Filter	Int. Aid	High	Moderate	Low-Moderate	22
Dortialo	Pot Filter (Ko	osim)	High	Moderate	High	10
Particle Domoval & Safa	Candla	OK	High	Moderate	Moderate	14
Removal & Safe		Mission	High	Moderate	Low	50
Storage	Filter	Berkefeld	High	Moderate	Moderate	136
	SODIS (UV)		Low	Low-Moderate	Moderate	8
Disinfostion	HTH Chlorin	le	Low	High	Low	0.3
Disinfection	Liquid Chlorine		Low	High	Low	2 – 5
	Aquatabs (201)		Low	High	Low-Moderate	13
Coagulation & Disinfection	PuR™ (P&G)		High	High	N/A	45 - 80
Safe	Locally Manufactured		N / A	N / A	Low	1.2
Storage	CDC (SWS)		N/A	N/A	Low	2.4
Sachat Watar	Hand-tied (si	ngle)	N / A	N/A	High	275
Sachet Water	Factory (wholesale)		N / A	N / A	High	657

Note: Annual cost per family was estimated by calculating using an anticipated average household size of 12 individuals and 2 liters of drinking water per individual per day.

MIT Clean Water 4 All, Inc. HWTS Product Assessment Description

- <u>Particle removal</u>: Alum and the Kosim ceramic pot filter have the most potential in the short term as they are low-cost, they effectively reduce turbidity (and microbial contamination), and are available in northern Ghana.
 - The OK candle filter and biosand filters (locally manufactured and International Aid) have longer term potential
- <u>Disinfection</u>: UV has not been shown to be highly effective given high atmospheric dust seen in northern Ghana, and thus chlorine disinfection emerges as the priority option.
 - Chlorine disinfection is less effective in water with turbidities >30 NTU, thus in rural areas with turbid source water chlorination should be used in conjunction with particle removal
 - PuR[™] offers a simple solution as it combines both particle removal and disinfection in a single sachet; however, the relatively high-cost and lack of availability in the region reduces the attractiveness of this option
- <u>Safe storage</u>: Low-cost safe storage options have the potential to enhance protection from recontamination, particularly if used in conjunction with chlorine disinfection.
- <u>High end products</u>: The more expensive **Mission and Berkefeld candle filters** as well as sachet water product should be targeted to upper and middle class

Market Segmentation

- **Objective:** Describe the household water treatment landscape in terms of observable differences between sample populations
 - To facilitate the development of targeted HWTS interventions
- To promote product adoption
 Market Landscape:
 - The vertical axis is source water, defined by community location and water quality
 - The horizontal axis is profession which serves as proxy for both income and daily activity

	t-						
RESPONDENT PROFESSION SOURCE WATER		Housewife	Agricultural	Production Worker	Sales & Other	Trader	Profess- ional
Urban							
Rural	Clear Water						
	Turbid Water						

• Segmentation: Based on observed HWTS preference the eighteen respondent types were combined into five segments, and priority HWTS products were matched to each segment

HWTS Market Landscape, N. Ghana

Priority HWTS products were matched with each segment based on observed differences in: 1) source water quality, 2) ability to pay and 3) consumer preferences

MIT Clean Water 4 All, Inc.HWTS Recommendations by TargetSegnent
Priority Options: Product Effectiveness, Adoption and
Sustained UseTarget Population• Develop a safe storage product – strong preference for
traditional durable, significant recontamination challenge12a2b3a3b

2a

2a 2b

3h

1

- Consider local manufacturing of a low-cost HWTS chlorine product (e.g., HTH or Liquid Chlorine)
- Develop a **chlorine treatment protocol** for communities with non-turbid water specifically dosing within 24h of consumption to combat recontamination due to long storage
- Opportunity for a **targeted sachet water business** that focuses on the urban upper and middle class
- Opportunity for low-cost combined treatment products in communities with turbid source water (e.g., Alum / Biosand / Kosim + Chlorine Disinfection (Aquatabs)
- Focus Kosim sales / distribution on rural areas with turbid water, and continue to develop the biosand for this market

Presentation Outline

- Ghana: Background and Logistics
- **.** Horizontal Roughing Filtration: Tamar Losleben
- Household Filtration (Biosand Filter) : Izumi Kikkawa
- Chlorine Products: Cash Fitzpatrick
- HWTS Consumer Choice Study: Vanessa Green

 Ceramic Pot (Kosim) filter + Chlorine Disinfection with Aquatabs: Andrew Swanton

Overview

3-Week Pilot Study: Combined *Kosim* Filter and Aquatabs System

•59 Households: 24 lower-class,35 lower middle-class

•Baseline: Survey, WQ Testing, Distribution of Jerry Cans, Aquatabs

•Follow-up (1 Week Later): Survey, WQ Testing

MIT Clean Water 4 All, Inc. Baseline Survey Results

16 Questions to Gauge User Acceptability, Appropriate Cleaning, Perception

Key Questions and Results:

From where do you collect your water? 95% dugoutHow many times per week do you add water to

the *Kosim* filter?

•Can you act out for me how to clean the filter? 100% yes

•Do you like the taste of the filtered water?

100% yes

Follow-Up Survey Results

8 Questions to Gauge User Acceptability, Perception with Addition of Aquatabs

Key Questions and Results:

•Do the Aquatabs improve the taste of the water? 100% yes

•Would you recommend the use of Aquatabs

to others? 100% yes

•Have you had any problems using Aquatabs? 100% no

•Specific Problems: "not comfortable", hernia/urine more yellow, stomach aches

Cost Results

Aquatabs cost 3 pesaws (=3 cents) per tablet, 3 GHC (=\$3 US dollars) for 100

•Question: "Would you spend 3 GHC for 100 Aquatabs?"

•If no: "What do you think a fair price is for 100 Aquatabs?"

•Kalariga (lower-class): 25% willing to pay 3 GHC, 1.8 GHC average

•Kakpagyili (lower middle-class): 94% willing to pay 3 GHC, others 1,2 GHC

Water Quality Data

Dugout

Pre-Treatment, Stored Water

	n	Turbidity	тс	EC		n	Turbidity	тс	EC
		(NU)	(CFU/100mL)	(CFU/100mL)			(NU)	(CFU/100mL)	(CFU/100mL)
Kalariga	1	400	6,200	67	Kalariga	1	150	5,000	100
KakDam1	1	400	11,000	<100	Kakpagyili	2	200	6,000	<100
KakDam2	1	1200	23,000	1,000	Total	3	180	5700	67

Post-Filtered

Post-Aquatabs

	n	Turbidity	TC	EC		n	Turbidity	TC	EC
		(NU)	(CFU/100mL)	(CFU/100mL)			(NU)	(CFU/100mL)	(CFU/100mL)
Kalariga	24	16	2,200	61	Kalariga	24	11	2,000	<100
Kakpagyili	35	17	2,900	60	Kakpagyili	35	38	900	110
Total	59	16	2,600	60	Total	59	27	1,300	86

% Reductions

•(-)ve % reductions, indicate % increase

Turbidity Test Results-Kalariga

Limit of Detection: <5 TU, Displayed as 2.5 TU Turbidity Detected, Baseline: 3/24, Post-intervention: 2/24
MIT Clean Water 4 All, Inc.

Turbidity Test Results-Kakpagyili

Limit of Detection: <5 TU, Displayed as 2.5 TU Turbidity Detected, Baseline: 2/35, Post-intervention: 8/35

MIT Clean Water 4 All, Inc. Total Coliform Test Results

3M Petrifilm Test

Community	Households with No TC Detected		
	Baseline	Post-Intervention	
Kalariga	5/24=21%	12/24=50%	
Kakpagyili	21/35=60%	26/35=74%	
Both	26/59=44%	38/59=64%	

Community	TC Count Decreased	TC Count Increased	TC Count Remained the Same
Kalariga	15/24=63%	3/24=13%	6/24=25%
Kakpagyili	12/35=34%	7/35=20%	16/35=46%
Both	27/59=46%	10/59=17%	22/59=37%

MIT Clean Water 4 All, Inc.

E.Coli Test Results

Community	Households with No EC Detected		
	Baseline	Post-Intervention	
Kalariga	21/24=88%	24/24=100%	
Kakpagyili	31/35=89%	34/35=97%	
Both	52/59=88%	58/59=98%	

Average EC concentrations higher in follow-up?

- •1 household during follow-up with *E.Coli*: 2,200 CFU/100mL
- •7 households during baseline with E. Coli: 50-200 CFU/100mL

Free Available Chlorine Test Results

% of Households with FAC level > 0.1 mg/L at follow-up

Kalariga: 63%, Kakpagyili: 66%

MIT Clean Water 4 All, Inc.

Flow Rate Test Results

Summary

•Average TC Conc. Reduced by 50%

•TC: 46% reduced, 37% same, 17% increased from baseline to post-intervention

- •No TC: 44% to 64%, No EC: 88% to 98%
- •64% Households had FAC > 0.1 mg/L at follow-up
- •FAC b/t 0-0.25 mg/L: 32% increased, 32% decreased (TC conc)
- •FAC b/t 1.01-2.00 mg/L: 67% increased, 8% decreased (TC conc)
- •All survey respondents: "improved taste of water" "would recommend to others"

